Matplotlib

Below are some code from the code source Data Science from Scratch: https://github.com/joelgrus/data-science-from-scratch


In [8]:
from matplotlib import pyplot as plt
import matplotlib.pyplot as plt
from collections import Counter
%matplotlib inline 

years = [1950, 1960, 1970, 1980, 1990, 2000, 2010]
gdp = [300.2, 543.3, 1075.9, 2862.5, 5979.6, 10289.7, 14958.3]

# create a line chart, years on x-axis, gdp on y-axis
plt.plot(years, gdp, color='green', marker='o', linestyle='solid')

# add a title
plt.title("Nominal GDP")

# add a label to the y-axis
plt.ylabel("Billions of $")
plt.show()


Bar Chart


In [9]:
movies = ["Annie Hall", "Ben-Hur", "Casablanca", "Gandhi", "West Side Story"]
num_oscars = [5, 11, 3, 8, 10]

# bars are by default width 0.8, so we'll add 0.1 to the left coordinates
# so that each bar is centered
xs = [i + 0.1 for i, _ in enumerate(movies)]

print "xs", xs

# plot bars with left x-coordinates [xs], heights [num_oscars]
plt.bar(xs, num_oscars)

plt.ylabel("# of Academy Awards")
plt.title("My Favorite Movies")

# label x-axis with movie names at bar centers
plt.xticks([i + 0.5 for i, _ in enumerate(movies)], movies)

plt.show()


xs [0.1, 1.1, 2.1, 3.1, 4.1]

Histogram

A bar chart can also be a good choice for plotting histograms of bucketed numeric values, in order to visually explore how the values are distributed.


In [14]:
grades = [83,95,91,87,70,0,85,82,100,67,73,77,0]
decile = lambda grade: grade // 10 * 10

histogram = Counter(decile(grade) for grade in grades)

print "Histogram values", histogram

plt.bar([x - 4 for x in histogram.keys()], # shift each bar to the left by 4
        histogram.values(),                # give each bar its correct height
        8)                                 # give each bar a width of 8

plt.axis([-5, 105, 0, 5])                  # x-axis from -5 to 105,
                                           # y-axis from 0 to 5

plt.xticks([10 * i for i in range(11)])    # x-axis labels at 0, 10, ..., 100
plt.xlabel("Decile")
plt.ylabel("# of Students")
plt.title("Distribution of Exam 1 Grades")
plt.show()


Histogram values Counter({80: 4, 70: 3, 0: 2, 90: 2, 100: 1, 60: 1})

In [ ]:


In [20]:
mentions = [500, 505]
years = [2013, 2014]

plt.bar([2012.6, 2013.6], mentions, 0.8)
plt.xticks(years)
plt.ylabel("# of times I heard someone say 'data science'")

# if you don't do this, matplotlib will label the x-axis 0, 1
# and then add a +2.013e3 off in the corner (bad matplotlib!)
plt.ticklabel_format(useOffset=False)

# misleading y-axis only shows the part above 500
plt.axis([2012.5,2014.5,499,506])
plt.title("Look at the 'Huge' Increase!")
plt.show()



In [19]:
plt.bar([2012.6, 2013.6], mentions, 0.8)
plt.xticks(years)
plt.ylabel("# of times I heard someone say 'data science'")

# if you don't do this, matplotlib will label the x-axis 0, 1
# and then add a +2.013e3 off in the corner (bad matplotlib!)
plt.ticklabel_format(useOffset=False)


plt.axis([2012.5,2014.5,0,550])
plt.title("Not So Huge Anymore")
plt.show()


Line Charts


In [22]:
variance     = [1, 2, 4, 8, 16, 32, 64, 128, 256]
bias_squared = [256, 128, 64, 32, 16, 8, 4, 2, 1]
total_error  = [x + y for x, y in zip(variance, bias_squared)]
xs = [i for i, _ in enumerate(variance)]

# we can make multiple calls to plt.plot
# to show multiple series on the same chart
plt.plot(xs, variance,     'g-',  label='variance')    # green solid line
plt.plot(xs, bias_squared, 'r-.', label='bias^2')      # red dot-dashed line
plt.plot(xs, total_error,  'b:',  label='total error') # blue dotted line

# because we've assigned labels to each series
# we can get a legend for free
# loc=9 means "top center"
plt.legend(loc=9)
plt.xlabel("model complexity")
plt.title("The Bias-Variance Tradeoff")
plt.show()


Scatterplots

A scatterplot is the right choice for visualizing the relationship between two paired sets of data.


In [23]:
friends = [ 70,  65,  72,  63,  71,  64,  60,  64,  67]
minutes = [175, 170, 205, 120, 220, 130, 105, 145, 190]
labels =  ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']

plt.scatter(friends, minutes)

# label each point
for label, friend_count, minute_count in zip(labels, friends, minutes):
    plt.annotate(label,
        xy=(friend_count, minute_count), # put the label with its point
        xytext=(5, -5),                  # but slightly offset
        textcoords='offset points')

plt.title("Daily Minutes vs. Number of Friends")
plt.xlabel("# of friends")
plt.ylabel("daily minutes spent on the site")
plt.show()


/Users/syednasar/sn/dev/tool/python/anaconda_install/anaconda/lib/python2.7/site-packages/matplotlib/collections.py:590: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
  if self._edgecolors == str('face'):

Wrong plot

Added plt.axis("equal") to fix the scale


In [27]:
test_1_grades = [ 99, 90, 85, 97, 80]
test_2_grades = [100, 85, 60, 90, 70]

plt.scatter(test_1_grades, test_2_grades)
plt.axis("equal") ##to fix the scale
plt.title("Axes Aren't Comparable")
plt.xlabel("test 1 grade")
plt.ylabel("test 2 grade")
plt.show()



In [ ]: